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INTRODUCTION

Variational principles apply mostly to boundary problems where eigen-

values are sought. It is seldom used for initial -,alue problems alone where

the far end conditions are neither known nor specified. If we use discrete

methods to solve an initial value problem, such as finite difference method,

only the initial conditions should be given. In the same way, if we employ

variational method with spline functions, we should not be concerned with the

far end conditions. This paper gives a procedure to find a recursive solution

of an initial value problem by variational methods using the cubic hermite

polynomial spline functions.

Let us consider a dynamical system governed by the following equation:

L(t)ya(t) - -Q(t) (1)

with appropriate boundary conditions. In the above equation L is a linear

operator, ya is the dependent variable, Q is a forcing function, and t is the

independent variable.

Some integral property in the form of a linear functional of the

variable,1 such as the inner product of an adjoint forcing function Q and the

solution of Eq. (1) can be used for estimation.

tb-
G[ya] f t QYadt (2)

to

1W. M. Stacy, Jr., "Variational Methods in Nuclear Reactor Physics," Academic
Press, 1974, p. 7.

H ill I ~II1 I"-



The estimate y which differs from the solution Ya of Eq. (1) by an increment

6 y can be written as

6Y - Y - Ya (3)

Then the estimate y becomes

tb tb tbGly) - f to Qydt - f to QYadt + f to Q~ydt

tb-
GtYal + f Q6ydt (4)

to

which is in error to first order in 6y and Q.

THE VARIATION PRINCIPLE

A more accurate estimate can be made by constructing a variational

principle1 for Eq. (2). By using the adjoint variable y as a Lagrange

multiplier for Eq. (1) added to G[y] we have

tb -

Jly,y) - G[yl + f° y (Q+Ly)dt
to

tb - tb - tb -
-f Qydt + f yQdt + f yLydt (5)

to t-o to

In order that J be a variational principle for G the following requirements

must be satisfied.

(a) J is stationary about the function ys which satisfies the relation

in Eq. (1).

L(t)y s - -Q(t) (6)

1W. M. Stacy, Jr., "Variational Methods in Nuclear Reactor Physics," Academic
Press, 1974, p. 7.



(b) The stationary value of J deduced from Eqs. (2) through (5) is

Jjy,yj - GjYs] + G[Ya] (7)

Consider first the stationarity of J by taking the variation

6J - 61f Qydt + f yQdt + f tyLydt
tb -t

4j - f 6y(Ly+Q)dt + ftb [Q6y + yLSy]dt (3)
to to

We will make an effort later to impose certain conditions in order that

the following equality holds:

tb- tb -

fo yLydt - f to6yLydt (9)

where L(t) is an adjoint operator.

By combining Eqs. (8) and (9) one obtains

ftb tb -- -

63 fb dy(Ly+Q)dt + f 6y[Ly + Qjdt - 0 (10)
to to

Since the variations 6y and 6y are arbitrary it leads to the requirement that

the stationary values ys and ys must satisfy

Lys -Q (11)

Lys - -Q . (12)

Since Eq. (11) is the same as Eq. (6), therefore J is stationary about the

function ys. Equation (12) is the adjoint equation in terms of the adjoint

operator L, the adjoint variable y, and the adjoint forcing function Q.

: 3



Using the relation in Eq. (11) for the stationary value of J from Eq. (5)

we have

- tb - tb.-
JIYs Ys1 fo Qysdt + fto ys(Q+Lys)dt - G[ys] (13)

Since J is stationary and 6J * 0 then

G[y s ] + G(ya ]  (14)

which is the requirement given in Eq. (7).

It is noted that Eq. (10) contains no boundary terms to be satisfied.

This bears an important point in the future discussion of the initial value

problems.

BILINEAR CONCOMITANT

The assumed equality in Eq. (9) is discussed here by considering the

following bilinear concomitant:1

tb - tby-
D = fto yLydt f t yLydt (15)

The above expression can also be written in terms of boundary conditions

at t - to and t - tb. It is assumed that these boundary conditions are

assigned in such a way that the above bilinear concomitant is identically

zero, i.e.,

D = 0 (16)

1W. M. Stacy, Jr., "Variational Methods in Nuclear Reactor Physics," Academic
Press, 1974, p. 7.
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Then the first variations of D also vanish.

6D - SD(6y) + 6D(6y) - 0 (17.)

Since 6y and 6y are independent of each other, then

- tb - tb
6D(6y) - f 6yLydt - f yLtydt - 0 (18)

to to

and
tb - tb -

6D(6y) - fto yLSydt - f 6yLydt - 0 (19)
to to

Equation (19) is identical to Eq. (9), which is the assumed equality

previously. This implies that if Eq. (16) is true then Eq. (9) or (19) is

automatically true.

INTEGRAL OF BILINEAR EXPRESSION

The integral of a function is given as

tb -

I- f (yy)dt (20)
to

where *(yy) is an arbitrary bilinear expression 2 in the form

q,(yy) - ay'y' + ay'y + yyy' + eyy (21)

The prime (') in the above expression denotes (d/dt).

Equation (20) can be integrated by parts. Two different forms of

integration and end conditions may be obtained as follows.

tb - tb
I - yLydt + (cy'+yy)yI (22)

to to

2R. Courant and D. Hilbert, "Methods of Mathematical Physics, Vol. I,"

Interscience Publishers Inc., 1953, p. 278.
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or
tb tb

I fo yLydt + (ay i By)y (23)
to

where the differential expressions are

Ly - (ay')' - By' + (ay)' - ey (24)

Ly - (ay')' + (ay)' - yy' - ey (25)

The bilinear concomitant given in Eq. (15) can now be expressed in terms

of the function values and their derivatives at the end points by equating

Eqs. (22) and (23).
_ _ _ tbD - [a(y'y-y'y) - (Y-B)YYI (26)

to

END CONDITIONS FOR THE ADJOINT SYSTEM

In order to satisfy the expression D E 0 in Eqs. (15) and (16) the end

terms in Eq. (26) must vanish. Thus it requires

cLb(Yb'yb-Yb'yb) - Qo(Yo'Yo-Yo'Yo) - (yb-ab)YbYb + (yo-Bo)YoYo = 0 (27)

Equation (27) can be satisfied identically if the end conditions of the

adjoint system are proportional to the end conditions of the original system

as follows:

Yb - (Yo- o)kYo (28a)

Yo - ('Yb-$b)kYh (28b)

Yb' - -a~b- 1 ao(Yb-b)kYo' (28c)

Yb' - -ao- ab( o-ao)kyb' (28d)

where k is a constant.

6



The above expressions give the required end conditions for the adjoint

system in terms of that of the original system. Thus from Eqs. (15) and (16):

tb -tb -
D W f yLydt - f yLydt 0 (29)

to to

To summarize, if one can make the end conditions of the adjoint system

satisfy the relationship in Eq. (28), the bilinear concomitent D vanishes.

The variation in Eq. (10) is then valid.

It is also noted that the variation in Eq. (10) has no far end terms

which simplify the computation. This is because the far end terms may cause

certain difficulties in many computational schemes on a number of variational

methods.

THE FIRST VARIATION

Since the variations 6y and 6y are independent to each other, we take the

first half of Eq. (10) as

6J(6y) = f 6yLydt + f 6yQdt = 0 (30)
to to

Equation (30) is not in a ready form for estimation. We prefer to use 61

which can be obtained from the bilinear expression I given in Eqs. (20) and

(21). Let

61 - SI(6y) + 6I(6y) (31)

The first part of the above expression can be derived from Eqs. (20) and (21)

as
- tb

6I(6y) f f [(ay'+yy)6y' + (0y'+cy)6y]dt (32)
to

7



Integrating by parts one obtains

- .. tb tb
61(6y) - (caY+YY)6y- - f 6y((y'+yy)' - (Oy'+cy)]dt (33)

to to

It is recognized that the integrand in the last term of the above formulae is

Ly. Solving for the last term we have

tb - tb
f 6yLydt - (ay'+yy)Sy - SI(6y) (34)
to to

Substituting Eq. (32) into (34) and then Eq. (34) into (30) one obtains

6J(6y) - (abYb'+YbYo) 6 Yb - (aoYo'+Yoy o ) 6y o

tb
- f [(ny'+yy)6y' + (By'+cy)6yldt

to

tb -
+ f 6yQdt - 0 (35)

to

The above equation contains only 6y and 6y' and none of the variation of the

higher derivative such as 6y" for a second order system. The dependent

variable also contains only y and y' and none of the higher derivative such as

y" for a second order system.

ADJOINT VARIABLE FAR END VALUE FOR INITIAL VALUE PROBLEMS

For a second order system the initial values of the function and its

first derivative are given, i.e., yo and yo' are known in Eq. (28). The far

end values for the adjoint system Yb and Yb' are found from Eqs. (28a) and

(28c). Since the variation of a constant is zero, then

6yo W 6yo' W 0 (36)
and

6Sb = 6Yb' = 0 (37)

8



The conclusion yb - 0 in Eq. (37) ts important in that the first term at the

right side of Eq. (35) vanishes. Thus the coefficient of 6y is not necessar-

ily zero. This implies that the function yb and its derivative Yb' at the far

end are not related as such. By not using any local boundary conditions at

the far end, the computation can start at the near end and carry on in one

direction.

Thus Eq. (35) is simplified to
- tb -

6J(6y) - -(Yoyo+oyo') 6 yo + fto 6yQdt

tb-
-f [(cyiBy')6y + (yy+cy')6y'Jdt (38)

to

It is noted that the above equation does not have boundary terms to be

satisfied at the far end at time tb. This is consistent with the notion of

'initial value problem" physically.

TRANSFORMATION OF COORDINATES

The integral sign in Eq. (38) can be converted into a summation sign if

discrete intervals for integration are used. Since the analysis is an initial

value problem, without losing any generality we may let

t o - 0 and tb - 1 , (39)

that is the independent variable is within the interval

0 4 t 4 1 (40)

Equation (38) can be discretized by letting

- Kt - (41)

0 4 t 4 1, 0 4 t ( 1, m 1,2,...K (42)

where K is the number of intervals.

9



Thus

d& Kdt dt -ldE (43)

The differential relationship is

1! -K dy(44)

or

y - Ky (45)

where

d
(*) -- C )(46)

Then Eq. (38) becomes

6J(6y) - 0

- K j

- -(Yyo+,m0Kyo)'5y0 + f0 6y("OQrCld&
Ml

I K [ (F-y(m)+KYY(m))6;(M) + (Yy(M2)+K(m)1K6y(m)]K71dC (47)

rn-I 0

PIECEWISE SPLINE FUNCTIONS

We may express the variables y(m) and ;(m)( ) in terms of piecewise

spline function aT(E and the node point functions Y(m) and Y(m) as follows.

ym()- aT(&) y(m) 6y(m) . t6y(m)]Ta(C) (48)

(m( - aT(M y(xn) 6;(m) . t[Sy(m)]Ta(&) (49)

ym( - aT(F)y(m) 6(m) . j6y(m))Ta(&) (50)

ym()- aT( )Y(m) t5;(M) . I6y(m)ITa(t) (51)

10



YO aT(I)y(o) (52)

* TQl)yCo) (53)

6y0  6Y(o)a(l) (54)

if Eqs. (48) through (54) are substituted into Eq. (47) one obtains

o - -(tSy(o)TaI)yoaTuj + aoKaT(1)]y(o)

K - I
+ I 16yC'm)IT K71f a( )QdE

K1
-~~~ X 6(flJ 'a() ICaT( ) + OaT( )]d& Y(tn)

rn-1 0

K-
I [6y(m)]T f a(&)[yaT(&) + aIaT( )]dE Y(tn) (55)

rn-I0

T h i s s i m l i f e s o 0 . -[ a y ( o ) 1 T a ( 1 ) [y a T ( ) + a, ya T ( ) ] y ( o )

+nI [ymjq nI~ [6y(rn)IT p(rn) y(n) (6

where

1
q(rn) - K-1 f I )Q

0J

[ql(tn), q2(tn), 3 r q4(m) ]T (57)

and

P(m) 0 f1  a(9)(M)K-1aT(&) + 0(ml)aT(&)] + aC )[y(mf)aT(E) +. a(m)yaT( )I~d

- (rn)C-IB + 6(m)C + -y~m)D + a(m)KE (58)

or
[Pil(m)] - (rn)K-I~bij] + B(m)[,cij] + yI(m)[dij] + a(M)Kf[eijl (59)



where
B bj a( )aT( )d& (60)
B = b l ] =fo

IC - [ciji - f a(4)aT(4)d4 (61)

D - (cij I - 1 a(&)aT(4)d& (62)

E - (dj] f a( )aT4( )dg (63)
0E - [ejjl - f ()To )~(3

CUBIC HERMITE POLYNOMIAL SPLINE

The cubic Hermite polynomial spline is continuous in the functional

values and its first derivatives across the nodes. Since we have no second

derivatives for a(E) in Eqs. (58) to (63), no higher order spline is necessary

for this problem.

The cubic Hermite polynomial gives

rai() - 1-3&4+24]

a2(&) " t -2 +C3

a( ) - (64)
a3( = 3-2-

a4( ) - _+3

whose derivatives are

S-i(6) +6 2

) 2(0 - 1-4+3&2
a() (65)

a3(&) - 6E-6 4)

a4( ) - -2&++3& 2

L2

12



It is obvious from the above equations that the node point values are

a(O) - (al(0) a2(0) a3(0) a4 (0)IT

I 1 0 0 0 IT (66a)

a(O) - lal(0) a2(0) a3(0) a4(0)IT

-[ 0 1 0 0 IT (66b)

a(1) ,al(l) a2(1) a3(1) a4 (1)IT

I = 0 0 1 0 IT (66c)

a(l) - 1;1(1) a2(1) a3(0) ;4( )IT

-[ 0 0 0 1 IT (66d)

We wish to form a vector whose components are taken from the functio. and its

derivative at the left node and then the same at the right node. From Eqs.

(48), (49), and (66) we have

S(M) (0) 1 - FaT(0y(n)] F 1 0 0 0

y(m)(0) = aT(O)Y(m) 0 1 0 0

y(m)(1) - I aT(l)Y( m )  0 0 1 0

L m()aTQ)y(m1) 1 1 0 0 1 1(67)
L I L I L Ji

If we define

y(M) [Y1 (m) Y2 (m) y3 (m) Y4(m)IT (68)

13



Then

Y1 (m) = y(m)(0) (69a)

y2(m) . ;(m)(0) (69b)

Y3(m) = y(m)() (69c)

Y4 (m) - ;(m)(1) (69d)

The above implies that the same node point has been represented by two

notations as follows

y(m+i)(0) . y(m)(1) (70a)

;(M+-)(O) - ;(m)(1) (70b)

By expanding Eq. (68) for different m one obtains

y(O) - [0 0 Y3(
0) Y4 (0)]IT - [0 0 y(O)(1) y(0)(j)]T (71a)

Y(1) - [Y1(1) Y2 (1) Y3(1) y4(1)IT = [y(l)(0) ;(1)(0) y()(1) ; 1 )(j)]T (71b)

y(m) . [yl(m) Y2(m) y3 (m) Y4 (m)IT .

[Y(M) (0) ;(m) (0) Y(,)(1 ) ;(M)(,)]T (71c)

(m+1) - 1 y(m+1) Y2(m+l) y 3(m+) Y4(m+1)]T

Thus we have

Yl(m+1) . y3 (m) (72a)

and
Y2(

m+ l) . Y4 (m) (72b)

for m - 0,1,2,...K.

Similar to the above equation one can prove from Eqs. (50) and (51) that the

adjoint variations are

6YI(m + l ) . 6Y3
( m)  (73a)

and

6y2(-+1) - 6Y4 (m) (73b)

14



METHOD OF SOLUTIONS

First we take the last term of Eq. (56) w~hich is

K
R3 - S ylm) Sy,(rn) 6y3(m) 5y4(m)][Pij(m)]1y1(m) Y2(m) Y3(m) Y4(m) IT

(74)

Using the relationship from Eqs. (72) and (73) gives

K-

R3 I {[Pll(m)y3 (tm+1) + P12Cm)y4(m-l) + P13Cm)Y3(n) + P14 (rn)y4(rn)]dy3(u1)
rn-i

+1- j 2 ,(r)y 3(m-i) + .2 2(m)y4(m-1) + P23(m)Y3(m) + p4my()~4m1

+ (P3 1(rn)y3 (rn-i) + P32(m)y4(r-) + P33 (rn)Y3(m) + P34 (rn)y4(m)ISY3(n)

+ [P41(rn)y3(m-i) +~ P42(m)Y4(rn-1) + P43(iU)Y3(m) + P44(m)y4(m)]t6Y 4(m)1 (75)

-3 - 1()y( + P12(1)'r4( 0) + P13(l)y3Cl) + P14(i)y4(1)16y3(O)

- P21(l)y3(O) + P2 2Cl)y4(O) + P23(1)y 3(1) + P24(i)y4(i)]6Y4(O)

K-1
I {(p11(m+i)y 3(m) + P12Cm+)y 4(r) + P13 (m+l)y3 (m+i) + P4mly(+)

+ (p31(m)y3(1111) + P32 (rn)y4(m-1) + P33(rn)Y3(m) + P34(m)y4(rn)1 3 (m)

K-1
I {IP 21(maii)y3(m) + P22(rn4-)y 4(m) + ,23(m+l)y3(m+') + P24 (m+l)y4 (m+i)]

rn-i

+ [P4l(r)y 3 (mi') + P42(rn)y4(m-i) + P4 3(m)Y3(n) + P4my()~ 4m

- [P3 1 C(K) Y3 (Ki1) + P3 2(K)y4 CKi1) + P3 3C(K)Y 3 (K) + P3 4 (K)Y 4 (KISY3 (K)

- IP 4 1 (K) Y3 (K-i) + P4 2 y 4 (Ki1) + P4 3 C(K)y 3 (K) + P4 4 C(K)Y 4 (K)]ay 4 (K) (76)

It is noted here that the variations at the far end are

6 Y3 (K) -y m 0 (77)

6y4 (K) 6y- . 0 (78)

15



by virtue of Eqs. (36) and (37). Thus the last two terms of Eq. (76) drop

Out.

It is again important to emphasize here that the computation does not

contain the condition placed at the far end boundary. The calculation starts

with the initial conditions and carries through in one direction.

The second term on the right side of Eq. (56) gives

K

R2 - I [ql (m ) q2 (m) q3 (m) q4 (m)][6y3 (
m -1) dY4 (m-) 6) Y3 4 (m)]Tm-1

= ql(1)6Y3(0) + q2(1)6Y4(0 )

K-1 K-1
+ I [ql ( + l ) + q3(m)]6Y3(m) + I [q2 (u

+1) + q4 (m)] 4
(m)

m-1 M-1

+ q3(K)6Y3 (K) + q4 (K)6y 4 (K) (79)

The last two terms drop out again by virtue of Eqs. (77) and (78)

The quantity q(m) is again expressed as

qjmJ - K-1  1 at(t)Q(m)()dt I - 1,2,3,4 (80)

The first term on the right of Eq. (56) is

RI - -[0 0 SY3 (0) 6y4 (
0 )][0 0 1 ojT(jo[0 0 1 01 + %oK[o 0 011}[0 0 Y3(0)Y4 (O)]T

- -6Y3 (
0 )(YoY3 (O) + aoKY4(

0 )} (81)

Combining all the above results and substituting into Eq. (56) we have

0 R1 + R2 + R3  (82)
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by virtue of Eqs. (36) and (37). Thus the last two terms of Eq. (76) drop

out.

It is again important to emphasize here that the computation does not

contain the condition placed at the far end boundary. The calculation starts

with the initial conditions and carries through in one direction.

The second term on the right side of Eq. (56) gives

K
R2 - K Iql(m) q2 (m) q3(m) q4(m)[16y3(

m- 1) 6y4 (m-1) Sy3(m) 6y4 (m)]T

M-i

= qj(l)6Y 3 (O) + q2 (i)6Y4 (0)

K-1 K-i
[ql(m+1) + q3(m) 1 6Y3 (m) + I [q2 (

re +i) + q4(m)]6Y4(m)

+ q3 (K)6Y3 (K) + q4 (K)6Y4 (K) (79)

The last two terms drop out again by virtue of Eqs. (77) and (78)

The quantity q(m) is again expressed as

q -(m) . K 1  I a9 (t)Q(m)(t)dt I - 1,2,3,4 (80)

The first term on the right of Eq. (56) is

R, - -[0 0 6Y3
(0 ) 6Y4 (

0 )1[0 0 1 OIT(yo[0 0 1 01 + aoK[0 0 01]}[0 0 Y3 (O)Y 4 (O)]T

- -6y3 (0){yoy3 (
0 ) + aoKY4(0 )} (81)

Combining all the above results and substituting into Eq. (56) we have

0 R1 + R2 + R3  (82)
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0 - (-(YoY3(O) + oY()

+ qj1 ) -(P 1 1 (1)Y3 (0) + P12 (1iY 4(O) + P13(l)Y3(I) + P14(1)Y4(i)I}6Y3 (0)

+ (q2(1) -1P 2 1(
1)Y3(

0) + P2 2(1)Y4(O) + P23Y3(1) + P41Y()1640

+ K-I {jq(It~) + q3(TS)]
rn-1

- Lpiifm1)Y 3 (m) + P1 2 (m+1)Y 4 (ui) + P13(ItN)y 3(f+'l) + P14(m+1) Y4 (M+1)3

- 1P3 1(rn)Y 3(ax-l) + P3 2 (m)y(ml) + P3 3CM)Y3(a) + P3 4 Cm)Y4 (m) 1 }SY3 (m)

K-1

+ I {q2(m~l) + q4(Ir)I
ia-1

- (P 2 1 (rn+l)Y3 (rn) + P2 2(i~l)y4 (m) + P2 3 (Uk+I)y3 (iU+1) +. P2 4 (urfl)y 4 (rm*i)]

- 1P1(mY3(M') P4(m~y(m-) +P 43(M)Y3 rn) +P 44(M)Y4(u)j}6Y 4(m) (3

Since the variations SY3(O), "Y4(
0), S5Y3(m), and SY4 (ml) in Eq. (83) are

all arbitrary, the coefficients of all these variations mnust vanish. We first

take the coefficients of the variations 6Y3(
0) and 6Y4(O).

P13( 1 ) P14(1) Y3(1) (-pi(')-Yo)(-Pi2(1 )-aoK) Y3(0) + j1

(84)

'It is noted that Y3(0) and Y4(0) are the initial conditions of the problem

that is from Eq. (67) and (46).

Y3 (0) Yo (85)

Y4 (0) - ;o- K71 y0 # -1 y (86)
dt

17



We can solve for Y3(1) and Y4(1) in terms of these initial conditions by

inverting the two by two matrix in Eq. (84).I I f -i -I
Y3 P13 P14( ) (-Pl)-yo) (-Pl2-aoK) yo qj(I

Y4(1) P23(1) P24(1) (-P21 (1)) (-P22 (1)) K 1 0' q2 (1)J

(87)

For a general case where m = 1,2,...K-1, we have by setting the

coefficients of SY3(m) and 6Y4(m) in Eq. (83) to zero.

Y P__13(m+2) P24(m+l)
Y4(m+l) 2(+ P4m'

(P21(m+I) + P4 3 (m)) (P22(m+l) + P24 (m)) Y4(m)

P3 1(m) P32 (m) Y3 (m
- ) +q(m+ l) + q3(m) (88)

P4 1(m) P4 2(m) Y4(m-l ) q2 (_+_) + q(m)(

We solve the above equation recursively for Y3(m+l) and Y4(m+l). Starting

with m - 1 we have the initial conditions Y3(0) and Y4(
0) and the solutions

from Eq. (87) for Y3(1) and Y4 (l). These values are substituted into Eq. (88)

to obtain Y3(
2) and y4 (

2). From the values of Y3(1), Y4 (1), Y3
(2), and Y4(

2)

one can determine Y3( 3) and Y4(
3). This procedure continues until we obtain

y3(K) and Y4(K) which are the final values of the problem.

18



NUMERICAL RESULTS AND DISCUSSION

The analysis presented in previous sections will now be tested by way of

some numerical examples. Let us consider a simple oscillator subjected to a

harmonic force. The differential equation can be written as

my + ky = f. cos wft 0 4 t 4 T (89a)

where T is some finite time of interest and a dot (*) denotes differentiation

with respect to time. The initial conditions are

y(O) - yo and ;(O) - yo (89b)

The system of Eqs. (89a) and (89b) is normalized with respect to T and it

becomes

y*" + k*y* = f* cos wf*t* 0 i t* 1 (90a)

and

y*(O) - yO* and y*(O) y O* (90b)

Through the following change of parameters

t dtt* -- , dr* = --
T T

y*(t*) - y(t) , y*'(t*) = T y (91)
dt

k* kT2/m , f* = foT 2/m , wf* =fT

YO* YO Y* = Tyl

Comparing Eq. (90a) with Eqs. (24) and (1), one has

a constant-1 , e-i
(92)

8-0 , y 0 and Q =-f* cos wf*t*

19



From the data presented here, we further set

m - i.0 , k - 1.0 , to 1.0 , wf = 0.5

The parameter T is given for each set of sample calculations.

First, Eq. (84) can be used exclusively to obtain all the solutions.

This is demonstrated in Tables I through III. In these tables T has taken to

be ten, five, and two, respectively and the number of steps for all cases is

taken to be ten. Both y(t) and ;(t) are shown and the exact solutions are

given in parentheses for comparison. It is clear that the results are

convergent, i.e., they are improved as the interval of time is decreased.

TABLE I. SOLUTION TO A FORCED VIBRATION PROBLEM OF A SIMPLE OSCILLATOR

(0 4 t 4 10, Ten Steps. Exact Solution Shown in Parenthesis)

t y(t) y(t)

0 1.0000 (Given) 1.000 (Given)

2.0 1.7590 (1.7684) -0.711 (-0.674)

4.0 -1.1495 (-1.0938) -1.450 (-1.512)

6.0 -1.8534 (-1.9195) 0.867 ( 0.773)

8.0 0.2261 (0.1663) 0.564 ( 0.689)

10.0 -0.0531 (0.1139) -0.404 (-0.381)
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TABLE I. SOLUTIONS TO A FORCED VIBRATION PROBLEM OF A SIMPLE OSCILLATOR

(0 ( t 4 5, Ten Steps. Exact Solutions Shown in Parentnesis)

t y(t) y(t)

0 1.0000 (Given) 1.0000 (Given)

1.0 1.8314 ( 1.8315) 0.4991 ( .5012)

2.0 1.7646 ( 1.7684) -0.6828 (-0.6740)

3.0 0.5536 ( 0.5654) -1.6161 (-1.6079)

4.0 -1.1074 (-1.09%8) -1.5060 (-1.5121)

5.0 -2.1221 (-2.1217) -0.4129 (-0.4350)

TABLE I1. SOLUTIONS TO A FORCED VIBRATION PROBLEM OF A SIMPLE OSCILLATOR

(0 4 t 4 2.0, Ten Steps. Exact Solutions Shown in Parenthesis)

t y(t) y(t)

0.0 1.0000 (Given) 1.0000 (Given)

0.4 1.3892 (1.3892) 0.9184 C .9184)

0.8 1.7132 (1.7132) 0.6760 (-0.6760)

1.2 1.9116 (1.9117) 0.2961 ( 0.2966)

1.6 1.9379 (1.9382) -0.1752 (-0.1742)

2.0 1.7676 (1.7684) -0.6754 (-0.6740)
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Some discussion on the present formulation compared with previous work
3 ,4

is in order here. In previous work on unconstrained, adjoint variational

formulation, the point of emphasis was to free the requirements of satisfying

any of the initial conditions and to let the approximate solution converge to

them. In the present analysis it is shown that the far end conditions need

not be considered in a variational formulation of approximate solutions. A

more detailed comparison in terms of numerical convergence, competency,

efficiency, etc. is planned.

3j. j. Wu, "Solutions to Initial Value Problems By Use of Finite-Element-
Unconstrained Variational Formulations," Journal of Sound and Vibration, 53,
1977, pp. 344-356.

4J. J. Wu and T. B. Simkins, "A Numerical Comparison Between Two Unconstrained

Variational Formulations," Journal of Sound and Vibration, 72, 1980, pp.
491-506.
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